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This Module’s Agenda

Higher-Level Programming

Spark

Algorithm Design
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The Datacenter 
as a Computer 

Q: What’s the 
instruction set?
A: Hadoop
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Layers of 
Abstraction

Higher Level Language (e.g. Python)

Lower Level Language (e.g. C)

Assembly

Machine Code

Instruction Set Architecture

Micro-Architecture

Gates, Adders, Registers, Etc.

Electronics (Transistors)

Physics
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Data 
Center 
Abstraction

??? <TODAY’S TOPIC>

Hadoop Task

HDFS / Hadoop Framework

Cluster of Computers (Networking)

Individual Servers
Higher Level Language (e.g. Python)

Lower Level Language (e.g. C)

Assembly

Machine Code

Instruction Set Architecture

Micro-Architecture

Gates, Adders, Registers, Etc.

Electronics (Transistors)

Physics
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Do you like programming in 
assembly?

It’s OK if the answer is yes, there’s no judgement here
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What’s the 
alternative?

• Hadoop is great, but has a 
lot of boilerplate and 
repetition

• It’s also tedious to 
program

• Can we create a 
Distributed C (or Python) 
to Hadoop’s Assembly?
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Yes We* Can

What we really need 
is SQL!

What we really need 
is a scripting 

language!
Answer: Answer:

* - not me personally, but it has been done.  Several times.
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SQL Pig Scripts

Both open-source projects today! 9

Both have their place.  Hive is on top of MapReduce.  It’s good for huge datasets that are 
accessed in a linear fashion.  One read, one write.  SQL requires lots of read/write access to 
the data.  
SQL – You need OLTP and/or low latency.  Less-complicated data sets that need frequent 
updates
Hive – You don’t care about latency, or have huge amounts of data (which means it doesn’t 
matter whether or not you care, you’re going to have latency).  Batch processing of 
complicated data sets
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HDFS

MapReduce

Hive Pig
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Pig and Hive programs are converted to MapReduce jobs at the end of the day.
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Pig Examples
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TimeUrlUser

8:00cnn.comAmy

10:00bbc.comAmy

10:05flickr.comAmy

12:00cnn.comFred

PageRankCategoryUrl

0.9Newscnn.com

0.8Newsbbc.com

0.7Photosflickr.com

0.9Sportsespn.com

Visits URL  Info

Task: Find the top 10 most visited pages in each category

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example

12
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visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate
top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example Script

13
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load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Query Plan

14
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load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Map1

Reduce1 Map2

Reduce2

Map3

Reduce3

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: MapReduce Execution
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YUP, you can do a map that takes multiple inputs.  Neato!
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visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)
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• Which would you rather:

• Read
• Write
• Debug (!)
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Isn’t Pig Slower than Hadoop?

Potentially.
Isn’t C slower than assembly?
Isn’t Python slower than C?
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The Data Center 
as a Computer

So Hadoop is the Instruction Set, 
right?

What if I need two reduce passes.  
Do I really need two jobs?

(On A1 yes, you do)
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reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

What’s wrong?

MapReduce Workflows

19

There is a lot of disk i/o involved which significantly reduces running MapReduce jobs like 
this.
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map

HDFS

HDFS

map

HDFS

map

HDFS

map

HDFS

✗

Want Map-to-Map?
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It’s okay not to have reduce but the output of map cannot go to another map.

Why would you want to do this? Well, what if you have a two easily expressed functions –
the combination might be a bit complicated. It’s admittedly not a very strong need.
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reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

reduce

HDFS

HDFS

✗

Want Map-to-Reduce-to-Reduce?

21

(Strictly speaking, there’s FILE access between map and reduce tasks, too, just not HDFS, 
but we’re keeping the slides simple)

Note: You can leave the second job’s map function off and it will assume you want an 
identity function map. The job goes straight to a shuffle.  I’m on the fence on if I should 
remove the second map, or just tell everyone that this will be a very trivial map, but still a 
map. 
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The Data Center 
as a Computer

Q: Is there a better 
instruction set?
A: Hadoop 2
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Hadoop 2.0

Nodes are now resource managers 

Can do MapReduce the same as 
always

Can also do other things
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Other Things?  Like What

Brief history:
Developed at UC Berkeley AMPLab in 2009

Open-sourced in 2010
Became top-level Apache project in February 2014

24
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Google Trends

Spark vs. Hadoop

September2014

Spark

Hadoop

25

Spark is more popular than Hadoop today.
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map
f: (K1, V1) 

⇒ List[(K2, V2)]

List[(K1,V1)]

List[(K3,V3)]

reduce
g: (K2, Iterable[V2]) ⇒

List[(K3, V3)]

MapReduce

27

This is the only mechanism we had in MapReduce.
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Important 
Term

Resilient Distributed Dataset –
RDD

RDD[T] – a collection of values of 
type T

RDDs are divided into 
“partitions”

Workers operate on partitions 
independently.
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RDD[T]

RDD[T]

filter
f: (T) ⇒
Boolean

map
f: (T) 
⇒ U

RDD[T]

RDD[U]

flatMap
f: (T) ⇒

TraversableOnce[U]

RDD[T]

RDD[U]

mapPartitions
f: (Iterator[T]) 
⇒ Iterator[U]

RDD[T]

RDD[U]

Map-like Operations

29

But Spark provides many more operations (enriched instruction set).

Everyone always asks about the differences, so here you are!

Consider an RDD[T] with 4 partitions on 4 workers. The above operations return an RDD[U] 
with 4 partitions
Let’s call the RDD[T] as RDDin and the returned RDD[U] as RDDout

map(f) – f is given one value of type T, and returns one value of type U
Each worker will call f(x) on each item x from RDDin
Each worker will put the value returned by f(x) into a partition of RDDout

flatMap(f) – f is given one value of type T, and returns an iterator/iterable collection that 
produces values of type U

Each worker will call f(x) on each item x from RDDin
Each worker will then traverse the iterable returned by f(x), and each value 

gets added to RDDout
(If you think only in terms of lists, then instead of getting an RDD of lists, 

they are “flattened”)
mapPartitions(f) – f is given an iterator that produces value of type T, and returns an 
iterator/iterable collection that produces values of type U
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Each worker will call f(x) ONCE where x is an iterator that traverses all items in 
that worker’s partition of RDDin

Each worker will then traverse the iterable returned by f(x), and each value 
gets added to RDDout just like flatMap

mapPartitions is handy when you want something like MapReduce’s setup and cleanup. 
You’d do:
def myFunction(values):

setup things
for x in values:

something, probably accumulating values
cleanup that returns accumulated values
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RDD[(K, V)]

RDD[(K, Iterable[V])]

groupByKey reduceByKey
f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

RDD[(K, V)]

aggregateByKey
Zero: U,

seqOp: (U, V) ⇒ U, 
combOp: (U, U) ⇒ U

RDD[(K, U)]

Reduce-like Operations

30

Note that these do NOT sort, they use in-memory hash tables for the shuffle, not sorted 
files. (Spark’s design assumes a lot more RAM than MapReduce does)

groupByKey – like MapReduces shuffle. NOT the reduce part, this is JUST the shuffle that 
brings the pairs to a single place. You’d then use map, flatMap, etc. to perform the reduce 
action itself.

reduceByKey – like MapReduce’s shuffle + combine + reduce.
What does a worker do to perform reduceByKey(f(a,b)) ?

1. Create a Hash table called HT
2.  For each (K,V) pair in RDDin

a. If k is not a key in HT, associate k with v in HT.
b. Otherwise, retrieve the old value vold from HT, and replace it 

with f(vold,v)
3. Perform a shuffle – each reducer-like-worker will receive key-value pairs. 

It will then repeat step 2 for all received pairs.

aggregateByKey – a more complicated reduceByKey
aggregateByKey(zero, insert, merge)

1. Create a Hash table called HT
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2.  For each (K,V) pair in RDDin
a. If k is not a key in HT, associate k with insert(zero, v) in HT.

b. Otherwise, retrieve the accumulator u from HT, and replace it 
with insert(u,v)

3. Perform a shuffle – each reducer-like-worker will receive key-value pairs. 
The third parameter, merge, is used to combine accumulators 

(There’s also combineByKey which is the same, except instead of a zero-value, you give it 
another function, one that creates an accumulator out of a single value V.
Technically combineByKey is the only “real” function – aggregateByKey(zero, insert, merge) 
calls combineByKey(lambda v: insert(zero, v), insert, merge), and reduceByKey(f) calls 
combineByKey(identity,f,f)
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And many other 
operations!

31
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Interactive Demo Time!

<Dan, showing off Spark Shell / PySpark>
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Introduction to 
Apache Spark

Introduction to 
Apache Spark

Slides from: Patrick Wendell – Databricks
Memes from: Ali Abedi
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What is Spark?

Efficient
•General execution 

graphs
• In-memory storage

Usable
•Rich APIs in Java, 

Scala, Python
• Interactive shell

Fast and Expressive Cluster Computing 
Engine Compatible with Apache Hadoop

34



Spark 
Programming 
Model
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Key Concept: RDD’s

Resilient Distributed 
Datasets
• Collections of objects spread across a 

cluster, stored in RAM or on Disk
• Built through parallel transformations
• Automatically rebuilt on failure

Operations
• Transformations

(e.g. map, filter, 
groupBy)

• Actions
(e.g. count, collect, save)

Write programs in terms of operations on 
distributed datasets

36



RDD structure

1 2 3 4 5 6RDD

partition

WorkerWorkerWorker 1
3

5
2

4
6

37



Example: Log Mining
Load error messages from a log into memory, then 

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

. . .

tasks

results
Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Full-text search of Wikipedia
• 60GB on 20 EC2 machine
• 0.5 sec vs. 20s for on-disk

Lazy evaluation: Spark doesn’t really do anything until it reaches an action! This helps Spark 
to optimize the execution and load only the data tat is really needed for evaluation.

Dan adds: If you branch, then you cache!
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Impact of Caching on Performance

69

58

41

30

12
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40

60

80

100

Cache
disabled
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Ex
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e 

(s
)

% of working set in cache
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Fault Recovery
RDDs track lineage information that can be used to efficiently 
recompute lost data

msgs = textFile.filter(lambda s: s.startsWith(“ERROR”))
.map(lambda s: s.split(“\t”)[2])

HDFS File Filtered RDD Mapped RDD
filter

(func = startsWith(…))
map

(func = split(...))
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Programming with 
RDD’s

41



SparkContext

• Main entry point to Spark functionality
• Available in shell as variable sc
• In standalone programs, you’d make your own

Poor font choice I think?  Lowercase “sc”
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Creating RDDs

# Turn a Python collection into an RDD
>sc.parallelize([1, 2, 3])

# Load text file from local FS, HDFS, or S3
>sc.textFile(“file.txt”)
>sc.textFile(“directory/*.txt”)
>sc.textFile(“hdfs://namenode:9000/path/file”)
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Basic Transformations
>nums = sc.parallelize([1, 2, 3])

# Pass each element through a function
>squares = nums.map(lambda x: x*x)   // {1, 4, 9}

# Keep elements passing a predicate
>even = squares.filter(lambda x: x % 2 == 0) // {4}

# Map each element to zero or more others
>nums.flatMap(lambda x: => range(x))

> # => {0, 0, 1, 0, 1, 2}

Range object (sequence 
of numbers 0, 1, …, x-1)
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Basic Actions
>nums = sc.parallelize([1, 2, 3])

# Retrieve RDD contents as a local collection
>nums.collect() # => [1, 2, 3]

# Return first K elements
>nums.take(2)   # => [1, 2]

# Count number of elements
>nums.count()   # => 3

# Merge elements with an associative function
>nums.reduce(lambda x, y: x + y)  # => 6

# Write elements to a text file
>nums.saveAsTextFile(“hdfs://file.txt”)
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Working with Key-Value Pairs
Spark’s “distributed reduce” transformations operate on 
RDDs of key-value pairs

Python: pair = (a, b)
pair[0] # => a 
pair[1] # => b

Scala: val pair = (a, b)
pair._1 // => a
pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b); 
pair._1 // => a
pair._2 // => b

While this seems awful, you rarely actually need to deal with pairs in Scala by using _1 and 
_2, you can use pattern matching / case lambdas in a way that’s not entirely unlike 
unpacking in Python
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Some Key-Value Operations

> pets = sc.parallelize(
[(“cat”, 1), (“dog”, 1), (“cat”, 2)])

> pets.reduceByKey(lambda x, y: x + y)
# => {(cat, 3), (dog, 1)}

> pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}
> pets.sortByKey()  # => {(cat, 1), (cat, 2), (dog, 1)}
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>lines = sc.textFile(“hamlet.txt”)
>counts = lines.flatMap(lambda line: line.split(“ ”))

.map(lambda word: (word, 1))

.reduceByKey(lambda x, y: x + y)
.saveAsTextFile(“results”)

Word Count (Python)

“to be or”

“not to be”

“to”
“be”
“or”
“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)
(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)
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val textFile = 
sc.textFile(“hamlet.txt”)

textFile
.flatMap(line => line.split(“ “))
.map(word => (word, 1))
.reduceByKey((x, y) => x + y)
.saveAsTextFile(“results”)

Word Count (Scala)
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val textFile = 
sc.textFile(“hamlet.txt”)

textFile
.flatMap(_.split(“ “))
.map((_, 1))
.reduceByKey(_ + _)
.saveAsTextFile(“results”)

(Alternative Scala)

In Scala, underscores mean “this expression is the body of an anonymous function”

“_ + _” means the same as “(x, y) => x + y”

(_+_) looks like a butthole but we’re all going to just ignore that and be mature
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I mean, word count, aka token frequency, is a building block for lots of text processing…just 
because it’s easy doesn’t mean it’s not useful.
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Other Key-Value Operations
> visits = sc.parallelize([ (“index.html”, “1.2.3.4”),

(“about.html”, “3.4.5.6”),
(“index.html”, “1.3.3.1”) ])

> pageNames = sc.parallelize([ (“index.html”, “Home”),
(“about.html”, “About”) ])

> visits.join(pageNames) 
# (“index.html”, (“1.2.3.4”, “Home”))
# (“index.html”, (“1.3.3.1”, “Home”))
# (“about.html”, (“3.4.5.6”, “About”))

> visits.cogroup(pageNames) 
# (“index.html”, ([“1.2.3.4”, “1.3.3.1”], [“Home”]))
# (“about.html”, ([“3.4.5.6”], [“About”]))
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Setting the Level of Parallelism

All the pair RDD operations take an optional second parameter for 
number of tasks

>words.reduceByKey(lambda x, y: x + y, 5)
>words.groupByKey(5)
>visits.join(pageViews, 5)

Dan adds: So does scc.textFile (and other base RDDs).  However, for these this is “minimum 
number of tasks”.  E.g. if a file is split into 16 blocks on HDFS, and you open it with 
textFile(PathString, 10), you’ll still get 16 partitions, not 10.
If you’re submitting a job with a total of 8 vCores, you should always have 8 partitions if you 
can manage it.  Otherwise a core will be idle.  (In fact, it’s usually better to have more tasks 
than cores, so that tasks bottle necked on reading will be able to share a single core).

What’s the default?
It uses the same number of partitions for destination as the source has.  Eg a reduceByKey
on an RDD with 8 partitions will result in another RDD with 8 partitions.
For joins, it’s the minimum of the LHS and RHS RDDs.  Eg join an RD with 3 parts to one 
with 8, you will get 3.

If you specify spark.default.parallelism it will use this as the default instead! (For shuffles 
only, not parallelize textFile or other base RDDs)
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Please watch your jobs on datasci and kill things that seem to be stuck.  Try on student.cs
FIRST, only run on datasci when you’re confident.  If you need to make changes, rerun on 
student.cs first!!!

I’ve added a bonus slide at the end with some tips about viewing Spark jobs on the cluster.  
(A big reason for “runs forever” on datasci is a reducer that’s O(n) – usually caused by 
stripes being merged inefficiently.)
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Under The Hood: DAG Scheduler

• General task graphs
• Automatically 

pipelines functions
• Data locality aware
• Partitioning aware

to avoid shuffles

= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map

Directed Acyclic Graph (DAG)
A job is broken down to multiple stages that form a DAG.

You can get the DAG from an RDD using the toDebugString method.  (print it, since it 
contains newlines and will be illegible as a string value)
It’s also viewable through the Hadoop monitoring page.
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Physical Operators

Narrow dependency is much faster than wide dependency because it does not require 
shuffling data between working nodes.

Also:  reduceByKey, groupByKey, etc will also have narrow dependencies if the upstream 
RDD is already partitioned by key.  Its less common but not unheard of.
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More RDD Operators

• map

• filter

• groupBy

• sort

• union

• join

• leftOuterJoin

• rightOuterJoin

• reduce

• count

• fold

• reduceByKey

• groupByKey

• cogroup

• cross

• zip

sample

take

first

partitionBy

mapWith

pipe

save    ...
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Performance
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PageRank Performance
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Since spark avoids heavy disk i/o, it significantly improves the performance. 
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Other Iterative Algorithms

0.96
110

0 25 50 75 100 125

Logistic Regression

4.1
155

0 30 60 90 120 150 180

K-Means Clustering
Hadoop

Spark

Time per Iteration (s)

Spark outperforms Hadoop in iterative programs because it tries to keep the data that will 
be used again in the next iteration in memory. In contrast with Hadoop which always read 
and write from/to disk.
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Hadoop Ecosystem and SparkHadoop Ecosystem and Spark
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YARN

YARN = Yet-Another-Resource-Negotiator
Provides API to develop any generic distributed application

Handles scheduling and resource request
MapReduce (MR2) is one such application in YARN

Hadoop’s (original) limitations:
Can only run MapReduce

What if we want to run other distributed frameworks?
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In Hadoop v1.0, the architecture was designed to support Hadoop MapReduce only. But 
later we realised that it is a good idea if other frameworks can also run on Hadoop cluster 
(rather than building a separate cluster for each framework). So in v2.0, YARN provides a 
general resource management system that can support different platforms on the same 
physical cluster.
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Hadoop v1.0

The Job tracker in v1.0 was specific to Hadoop jobs.
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Hadoop v2.0

But the resource manager in v2.0 can support different types of jobs (e.g., Hadoop, 
Spark,…).
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Spark Architecture
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Important –
There are 
multiple 
tasks per 
executor

Why is this important?

To work, the Spark driver must send relevant 
code (Scala or Python) to run each task.

thresh = 5
myRdd.map(lambda x: x >= thresh)

The lambda “captures” thresh, so it gets 
packaged up too.  (That’s bad if it’s large)

68



Broadcast

If you Broadcast a value, then Spark 
only sends one copy per Executor 
(worker machine) not per Task

thresh = sc.broadcast(5)

myRdd.filter(lambda x: x > thresh.value)

(It makes no difference here, but 
would if broadcasting a lookup table)
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Constant means Constant

Broadcast variables are read-only

thresh = sc.broadcast(5)
thresh.value = 6
Error: value is not a member of …Broadcast[int]
Error: value is not assignable

(Global variables are too, but will silently fail)

The errors are what you’d see in Scala or Python

Note that of course it’s technically possible to make a broadcast variable where the value is 
a mutable type (easier in Python where that’s most collection types, but still doable in 
Scala)
This will “work” in that it won’t give you the above errors.
But it won’t “work” in that each worker has its own copy of this value, so if one of them 
updates a dictionary, the other workers don’t see that.
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Accumulators

A Broadcast variable carries 
information from Driver to 
Executor

What if we want 
communication from Executor 
back to Driver?

A: Accumulator
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Counter Accumulators (Python)

lineCounter = sc.accumulator(0)

def split_and_count(line):
lineCounter.add(1)
return line.split()

myRdd.map(split_and_count). …
lineCounter.value()
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Counter Accumulators (Scala)

val lineCounter = sc.longAccumulator

def split_and_count(line : String) = {
lineCounter.add(1)
line.split()

}

myRdd.map(split_and_count). …
lineCounter.value
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Types of Accumulator

longAccumulator, doubleAccumulator

(In Python, they’re just called accumulator)

Used for accumulating numerical values
Driver can inspect the value (and take average of values accumulated)
Workers can only write
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Partitioners

By default Spark shuffles use a hash partitioner (just like MapReduce)

Also like MapReduce, can override.
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(Now I’m taking from Ali again)

Movie rating example

This example in particular is not very helpful in slide-only form.  I alt-tab and do some 
goofing around in spark-shell or pyspark
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Input Format

CSV file
Fields:
• User ID (unique key per user)
• Movie ID (unique key per movie)
• Rating (1-5 stars)
• Text of review (optional)

e.g. 
“1, 100, 3.5, ‘s aight”
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“1, 100, 4.0, …”
“1, 200, 5.0, …”
“2, 100, 5.0, …”

“60, 200, 3.0, …”
“61, 100, 3.0, …”
“61, 200, 1.0, …”

“80, 100, 2.0, …”
“81, 100, 4.0, …”
“82, 100, 5.0, …”

(1, 100, 4.0, …)
(1, 200, 5.0, …)
(2, 100, 5.0, …)

(60, 200, 3.0, …)
(61, 100, 3.0, …)
(61, 200, 1.0, …)

(80, 100, 2.0, …)
(81, 100, 4.0, …)
(82, 100, 5.0, …)

RD
D

Map ( lambda x:x.split(“,”))

(100, 4.0)
(200, 5.0)
(100, 5.0)

(200, 3.0)
(100, 3.0)
(200, 1.0)

(100, 2.0)
(100, 4.0)
(100, 5.0)

Map ( lambda x:(int(x[1]), 
float(x[2])))

The “” are missing from the tuples in the middle because I’m not going to type that many 
“”””””!  It’d be really hard to read I think
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(100, 4.0)
(200, 5.0)
(100, 5.0)

(200, 3.0)
(100, 3.0)
(200, 1.0)

(100, 2.0)
(100, 4.0)
(100, 5.0)

(100, [4.0, 5.0, 3.0, 
2.0, 4.0, 5.0, …]) (200, [5.0, 3.0, 1.0, …]) …

groupByKey()

(100, 4.7) (200, 2.4) …

map(…)
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(100, 4.0)
(200, 5.0)
(100, 5.0)

(200, 3.0)
(100, 3.0)
(200, 1.0)

(100, 2.0)
(100, 4.0)
(100, 5.0)

(100, [4.0, 5.0, 3.0, 
2.0, 4.0, 5.0, …]) (200, [5.0, 3.0, 1.0, …]) …

groupByKey()

(100, 4.7) (200, 2.4) …

Can we do better?
Combiner?

map(…)

Avoid groupByKey if you can – MapReduce (without combiner) in Spark is essentially –
flatmap -> groupByKey -> flatmap.  We’re trying to do better than MapReduce though.

Wait…converting MapReduce to Spark doesn’t use the reduceByKey function???  That’s 
right.  MapReduce’s reduce is more flexible.  
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Reduce vs reduceByKey

Reduce (MapReduce)

• (K2,V2) ⇒ List[K3,V3]
• KVP are partitioned and shuffled 

by Partitioner
• Reduce job calls reduce on keys 

in sorted order 

reduceByKey (Spark)

• V ⇒ V

• RDD[(K,V)] ⇒ RDD[(K,V)]
• Less flexible

• But does what reduce should 
normally be used for

• Reduces before shuffle 
(combiner)

• Reduces after shuffle (reducer)
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reduceByKey vs combineByKey

combineByKey gives more fine-grained control (if needed)

RDD[(K,V)].combineByKey(create, append, merge) ⇒ RDD[(K,C)]
create – make a C from a V
append – take a C and add a V to it
merge – combine two C

reduceByKey(reduce) calls combineByKey(identity, reduce, reduce)

82



reduceByKey vs aggregateByKey

aggregateByKey is between reduceByKey and combineByKey

RDD[(K, V)].aggregateByKey(init, append, merge) => RDD[(K, C)]
init – initial (or zero) value [type C]
append- take a C and add a V to it
merge- combine two C
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groupByKey
You (probably) don’t want to 
use it

This is incomplete!  If your reduce action needs to know what the key is (meaning, if some 
keys need to be treated differently) then groupByKey -> map or mapPartitions might be 
what you want.
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(100, (4.0, 1))
(200, (5.0, 1))
(100, (5.0, 1))

(200, (3.0, 1))
(100, (3.0, 1))
(200, (1.0, 1))

(100, (2.0, 1))
(100, (4.0, 1))
(100, (5.0, 1))

(100, (2430, 517 )) (200, (1020, 425)) …

reduceByKey(…,3)

(100, 4.7) (200, 2.4) …

(100, (9.0, 2))
(200, (5.0, 1))

(100, (2.0, 1))
(200, (4.0, 2)) (100, (11.0, 3))

mapValues(…)

Spark’s reduceByKey is NOT like the Reduce phase of MapReduce!

reduceByKey – partitions the RDD, then reduces each partition, THEN shuffles for a final 
reduce.
The second parameter here is optional (the default number of partitions is a Spark 
configuration option)
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(100, 4.7) (200, 2.4) …

saveAsTextFile()

Part-00000 Part-00001 Part-00002

86



(100, 4.7) (200, 2.4) …

saveAsTextFile()

Part-00000

(100, 4.7)
(200, 2.4)

…

coalesce(1)
Or

repartition(1)

Repartition triggers shuffling but it gives more balanced partitions. It can be used to 
increase or decrease the number of partitions.
Coalesce can be used to only reduce  the number of partitions. It avoids full shuffling so it is 
faster than repartition but it may give unbalanced partitions. 
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Just the Code (Scala)

sc.textFile("movies.csv").
map(_.split(",")).
map(lst => (lst(1).toInt, (lst(2).toDouble,1))).
reduceByKey({case ((s1,c1), (s2,c2)) => 

(s1 + s2, c1 + c2)}).
mapValues({case (sum, cnt) => 

sum / cnt }).
coalesce(1).
saveAsTextFile("averages")

Behold the power of pattern matching anonymous functions!  Pattern matching is one of 
several reasons to love Scala
I could have written (p1, p2) => (p1._1 + p2._1, p1._2 + p2._2)) but that’s ugly!

Also…pro tip for live coding in front of an audience.  Names like “count” and “cnt” are easy 
to typo.  There was some scandalized gasps one lecture, let me tell you…

88



Just the Code (Python)

sc.textFile("movies.csv").\

map(lambda line: line.split(",")).\

map(lambda lst: 

(int(lst[1]), (float(lst[2]),1))).\

reduceByKey(lambda p1, p2: 

(p1[0] + p2[0], p1[1] + p2[1])).\

mapValues(lambda pair: pair[0] / pair[1])).\

coalesce(1).\

saveAsTextFile("averages")
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D’ya like DAGs?

print(rdd.toDebugString())
(1) CoalescedRDD[13] at coalesce at …
|  MapPartitionsRDD[12] at map at …
|  ShuffledRDD[11] at reduceByKey at …
+-(2) MapPartitionsRDD[10] at map at …

|  MapPartitionsRDD[9] at map at …
|  movies.csv MapPartitionsRDD[8] at textFile …
|  movies.csv HadoopRDD[7] at textFile …

Read bottom-to-top
1. Text file loaded and partitioned (like MapReduce in Hadoop, this will try to allocate the 

jobs to workers that already have that chunk of HDFS data)
2. Map is applied to existing partitions (split the lines)
3. Map is applied to existing partitions (extract useful fields, convert to appropriate types, 

convert rating to (rating, 1) for averages
4. reduceByKey triggers a repartition based on the keys (movie IDs)
5. Map is applied to the new partitions (convert (sum , count) to sum / count)
6. Coalesce merges data into 1 partition
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451 – A2 tips

• For CS451 students – the Hadoop cluster page you viewed on A0 is 
useful for figuring out what’s going on with your Spark jobs!

• If you click “ApplicationManager” you can explore the DAG 
graphically, including seeing all of the individual tasks created.

• Caution – if your map / flatMap is slow…it might actually be the next 
stage that’s inefficient:
• RDD.flatMap(…).reduceByKey(…) – as the flatMap emits pairs, they’ll be 

combined by reduceByKey’s lambda (like a MapReduce combiner).
• If this combiner is expensive, it’ll look like flatMap is slow
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