
Data-Intensive
Distributed
Computing
CS431/451/631/651

Module 3 – From
MapReduce to Spark

1

This Module’s Agenda

Higher-Level Programming

Spark

Algorithm Design

2

The Datacenter
as a Computer

Q: What’s the
instruction set?
A: Hadoop

3

Layers of
Abstraction

Higher Level Language (e.g. Python)

Lower Level Language (e.g. C)

Assembly

Machine Code

Instruction Set Architecture

Micro-Architecture

Gates, Adders, Registers, Etc.

Electronics (Transistors)

Physics

4

Data
Center
Abstraction

??? <TODAY’S TOPIC>

Hadoop Task

HDFS / Hadoop Framework

Cluster of Computers (Networking)

Individual Servers
Higher Level Language (e.g. Python)

Lower Level Language (e.g. C)

Assembly

Machine Code

Instruction Set Architecture

Micro-Architecture

Gates, Adders, Registers, Etc.

Electronics (Transistors)

Physics

5

Do you like programming in
assembly?

It’s OK if the answer is yes, there’s no judgement here

6

What’s the
alternative?

• Hadoop is great, but has a
lot of boilerplate and
repetition

• It’s also tedious to
program

• Can we create a
Distributed C (or Python)
to Hadoop’s Assembly?

7

Yes We* Can

What we really need
is SQL!

What we really need
is a scripting

language!
Answer: Answer:

* - not me personally, but it has been done. Several times.

8

SQL Pig Scripts

Both open-source projects today! 9

Both have their place. Hive is on top of MapReduce. It’s good for huge datasets that are
accessed in a linear fashion. One read, one write. SQL requires lots of read/write access to
the data.
SQL – You need OLTP and/or low latency. Less-complicated data sets that need frequent
updates
Hive – You don’t care about latency, or have huge amounts of data (which means it doesn’t
matter whether or not you care, you’re going to have latency). Batch processing of
complicated data sets

9

HDFS

MapReduce

Hive Pig

10

Pig and Hive programs are converted to MapReduce jobs at the end of the day.

10

Pig Examples

11

TimeUrlUser

8:00cnn.comAmy

10:00bbc.comAmy

10:05flickr.comAmy

12:00cnn.comFred

PageRankCategoryUrl

0.9Newscnn.com

0.8Newsbbc.com

0.7Photosflickr.com

0.9Sportsespn.com

Visits URL Info

Task: Find the top 10 most visited pages in each category

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example

12

12

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate
top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: Example Script

13

13

load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig Query Plan

14

14

load visits

group by url

foreach url
generate count load urlInfo

join on url

group by category

foreach category
generate top(urls, 10)

Map1

Reduce1 Map2

Reduce2

Map3

Reduce3

Pig Slides adapted from Olston et al. (SIGMOD 2008)

Pig: MapReduce Execution

15

YUP, you can do a map that takes multiple inputs. Neato!

15

visits = load ‘/data/visits’ as (user, url, time);

gVisits = group visits by url;

visitCounts = foreach gVisits generate url, count(visits);

urlInfo = load ‘/data/urlInfo’ as (url, category, pRank);

visitCounts = join visitCounts by url, urlInfo by url;

gCategories = group visitCounts by category;

topUrls = foreach gCategories generate top(visitCounts,10);

store topUrls into ‘/data/topUrls’;

Pig Slides adapted from Olston et al. (SIGMOD 2008)

16

• Which would you rather:

• Read
• Write
• Debug (!)

16

Isn’t Pig Slower than Hadoop?

Potentially.
Isn’t C slower than assembly?
Isn’t Python slower than C?

17

The Data Center
as a Computer

So Hadoop is the Instruction Set,
right?

What if I need two reduce passes.
Do I really need two jobs?

(On A1 yes, you do)

18

reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

HDFS

reduce

map

HDFS

What’s wrong?

MapReduce Workflows

19

There is a lot of disk i/o involved which significantly reduces running MapReduce jobs like
this.

19

map

HDFS

HDFS

map

HDFS

map

HDFS

map

HDFS

✗

Want Map-to-Map?

20

It’s okay not to have reduce but the output of map cannot go to another map.

Why would you want to do this? Well, what if you have a two easily expressed functions –
the combination might be a bit complicated. It’s admittedly not a very strong need.

20

reduce

map

HDFS

HDFS

reduce

map

HDFS

reduce

map

reduce

HDFS

HDFS

✗

Want Map-to-Reduce-to-Reduce?

21

(Strictly speaking, there’s FILE access between map and reduce tasks, too, just not HDFS,
but we’re keeping the slides simple)

Note: You can leave the second job’s map function off and it will assume you want an
identity function map. The job goes straight to a shuffle. I’m on the fence on if I should
remove the second map, or just tell everyone that this will be a very trivial map, but still a
map.

21

The Data Center
as a Computer

Q: Is there a better
instruction set?
A: Hadoop 2

22

Hadoop 2.0

Nodes are now resource managers

Can do MapReduce the same as
always

Can also do other things

23

Other Things? Like What

Brief history:
Developed at UC Berkeley AMPLab in 2009

Open-sourced in 2010
Became top-level Apache project in February 2014

24

24

Google Trends

Spark vs. Hadoop

September2014

Spark

Hadoop

25

Spark is more popular than Hadoop today.

25

26

map
f: (K1, V1)

⇒ List[(K2, V2)]

List[(K1,V1)]

List[(K3,V3)]

reduce
g: (K2, Iterable[V2]) ⇒

List[(K3, V3)]

MapReduce

27

This is the only mechanism we had in MapReduce.

27

Important
Term

Resilient Distributed Dataset –
RDD

RDD[T] – a collection of values of
type T

RDDs are divided into
“partitions”

Workers operate on partitions
independently.

28

RDD[T]

RDD[T]

filter
f: (T) ⇒
Boolean

map
f: (T)
⇒ U

RDD[T]

RDD[U]

flatMap
f: (T) ⇒

TraversableOnce[U]

RDD[T]

RDD[U]

mapPartitions
f: (Iterator[T])
⇒ Iterator[U]

RDD[T]

RDD[U]

Map-like Operations

29

But Spark provides many more operations (enriched instruction set).

Everyone always asks about the differences, so here you are!

Consider an RDD[T] with 4 partitions on 4 workers. The above operations return an RDD[U]
with 4 partitions
Let’s call the RDD[T] as RDDin and the returned RDD[U] as RDDout

map(f) – f is given one value of type T, and returns one value of type U
Each worker will call f(x) on each item x from RDDin
Each worker will put the value returned by f(x) into a partition of RDDout

flatMap(f) – f is given one value of type T, and returns an iterator/iterable collection that
produces values of type U

Each worker will call f(x) on each item x from RDDin
Each worker will then traverse the iterable returned by f(x), and each value

gets added to RDDout
(If you think only in terms of lists, then instead of getting an RDD of lists,

they are “flattened”)
mapPartitions(f) – f is given an iterator that produces value of type T, and returns an
iterator/iterable collection that produces values of type U

29

Each worker will call f(x) ONCE where x is an iterator that traverses all items in
that worker’s partition of RDDin

Each worker will then traverse the iterable returned by f(x), and each value
gets added to RDDout just like flatMap

mapPartitions is handy when you want something like MapReduce’s setup and cleanup.
You’d do:
def myFunction(values):

setup things
for x in values:

something, probably accumulating values
cleanup that returns accumulated values

29

RDD[(K, V)]

RDD[(K, Iterable[V])]

groupByKey reduceByKey
f: (V, V) ⇒ V

RDD[(K, V)]

RDD[(K, V)]

RDD[(K, V)]

aggregateByKey
Zero: U,

seqOp: (U, V) ⇒ U,
combOp: (U, U) ⇒ U

RDD[(K, U)]

Reduce-like Operations

30

Note that these do NOT sort, they use in-memory hash tables for the shuffle, not sorted
files. (Spark’s design assumes a lot more RAM than MapReduce does)

groupByKey – like MapReduces shuffle. NOT the reduce part, this is JUST the shuffle that
brings the pairs to a single place. You’d then use map, flatMap, etc. to perform the reduce
action itself.

reduceByKey – like MapReduce’s shuffle + combine + reduce.
What does a worker do to perform reduceByKey(f(a,b)) ?

1. Create a Hash table called HT
2. For each (K,V) pair in RDDin

a. If k is not a key in HT, associate k with v in HT.
b. Otherwise, retrieve the old value vold from HT, and replace it

with f(vold,v)
3. Perform a shuffle – each reducer-like-worker will receive key-value pairs.

It will then repeat step 2 for all received pairs.

aggregateByKey – a more complicated reduceByKey
aggregateByKey(zero, insert, merge)

1. Create a Hash table called HT

30

2. For each (K,V) pair in RDDin
a. If k is not a key in HT, associate k with insert(zero, v) in HT.

b. Otherwise, retrieve the accumulator u from HT, and replace it
with insert(u,v)

3. Perform a shuffle – each reducer-like-worker will receive key-value pairs.
The third parameter, merge, is used to combine accumulators

(There’s also combineByKey which is the same, except instead of a zero-value, you give it
another function, one that creates an accumulator out of a single value V.
Technically combineByKey is the only “real” function – aggregateByKey(zero, insert, merge)
calls combineByKey(lambda v: insert(zero, v), insert, merge), and reduceByKey(f) calls
combineByKey(identity,f,f)

30

And many other
operations!

31

31

Interactive Demo Time!

<Dan, showing off Spark Shell / PySpark>

32

Introduction to
Apache Spark

Introduction to
Apache Spark

Slides from: Patrick Wendell – Databricks
Memes from: Ali Abedi

33

What is Spark?

Efficient
•General execution

graphs
• In-memory storage

Usable
•Rich APIs in Java,

Scala, Python
• Interactive shell

Fast and Expressive Cluster Computing
Engine Compatible with Apache Hadoop

34

Spark
Programming
Model

35

Key Concept: RDD’s

Resilient Distributed
Datasets
• Collections of objects spread across a

cluster, stored in RAM or on Disk
• Built through parallel transformations
• Automatically rebuilt on failure

Operations
• Transformations

(e.g. map, filter,
groupBy)

• Actions
(e.g. count, collect, save)

Write programs in terms of operations on
distributed datasets

36

RDD structure

1 2 3 4 5 6RDD

partition

WorkerWorkerWorker 1
3

5
2

4
6

37

Example: Log Mining
Load error messages from a log into memory, then

interactively search for various patterns

lines = spark.textFile(“hdfs://...”)

errors = lines.filter(lambda s: s.startswith(“ERROR”))

messages = errors.map(lambda s: s.split(“\t”)[2])

messages.cache()

Block 1

Block 2

Block 3

Worker

Worker

Worker

Driver

messages.filter(lambda s: “mysql” in s).count()

messages.filter(lambda s: “php” in s).count()

. . .

tasks

results
Cache 1

Cache 2

Cache 3

Base RDDTransformed RDD

Action

Full-text search of Wikipedia
• 60GB on 20 EC2 machine
• 0.5 sec vs. 20s for on-disk

Lazy evaluation: Spark doesn’t really do anything until it reaches an action! This helps Spark
to optimize the execution and load only the data tat is really needed for evaluation.

Dan adds: If you branch, then you cache!

38

Impact of Caching on Performance

69

58

41

30

12

0

20

40

60

80

100

Cache
disabled

25% 50% 75% Fully cached

Ex
ec

ut
io

n
ti

m
e

(s
)

% of working set in cache

39

Fault Recovery
RDDs track lineage information that can be used to efficiently
recompute lost data

msgs = textFile.filter(lambda s: s.startsWith(“ERROR”))
.map(lambda s: s.split(“\t”)[2])

HDFS File Filtered RDD Mapped RDD
filter

(func = startsWith(…))
map

(func = split(...))

40

Programming with
RDD’s

41

SparkContext

• Main entry point to Spark functionality
• Available in shell as variable sc
• In standalone programs, you’d make your own

Poor font choice I think? Lowercase “sc”

42

Creating RDDs

Turn a Python collection into an RDD
>sc.parallelize([1, 2, 3])

Load text file from local FS, HDFS, or S3
>sc.textFile(“file.txt”)
>sc.textFile(“directory/*.txt”)
>sc.textFile(“hdfs://namenode:9000/path/file”)

43

Basic Transformations
>nums = sc.parallelize([1, 2, 3])

Pass each element through a function
>squares = nums.map(lambda x: x*x) // {1, 4, 9}

Keep elements passing a predicate
>even = squares.filter(lambda x: x % 2 == 0) // {4}

Map each element to zero or more others
>nums.flatMap(lambda x: => range(x))

> # => {0, 0, 1, 0, 1, 2}

Range object (sequence
of numbers 0, 1, …, x-1)

44

Basic Actions
>nums = sc.parallelize([1, 2, 3])

Retrieve RDD contents as a local collection
>nums.collect() # => [1, 2, 3]

Return first K elements
>nums.take(2) # => [1, 2]

Count number of elements
>nums.count() # => 3

Merge elements with an associative function
>nums.reduce(lambda x, y: x + y) # => 6

Write elements to a text file
>nums.saveAsTextFile(“hdfs://file.txt”)

45

Working with Key-Value Pairs
Spark’s “distributed reduce” transformations operate on
RDDs of key-value pairs

Python: pair = (a, b)
pair[0] # => a
pair[1] # => b

Scala: val pair = (a, b)
pair._1 // => a
pair._2 // => b

Java: Tuple2 pair = new Tuple2(a, b);
pair._1 // => a
pair._2 // => b

While this seems awful, you rarely actually need to deal with pairs in Scala by using _1 and
_2, you can use pattern matching / case lambdas in a way that’s not entirely unlike
unpacking in Python

46

Some Key-Value Operations

> pets = sc.parallelize(
[(“cat”, 1), (“dog”, 1), (“cat”, 2)])

> pets.reduceByKey(lambda x, y: x + y)
=> {(cat, 3), (dog, 1)}

> pets.groupByKey() # => {(cat, [1, 2]), (dog, [1])}
> pets.sortByKey() # => {(cat, 1), (cat, 2), (dog, 1)}

47

>lines = sc.textFile(“hamlet.txt”)
>counts = lines.flatMap(lambda line: line.split(“ ”))

.map(lambda word: (word, 1))

.reduceByKey(lambda x, y: x + y)
.saveAsTextFile(“results”)

Word Count (Python)

“to be or”

“not to be”

“to”
“be”
“or”
“not”
“to”
“be”

(to, 1)
(be, 1)
(or, 1)
(not, 1)
(to, 1)
(be, 1)

(be, 2)
(not, 1)

(or, 1)
(to, 2)

48

val textFile =
sc.textFile(“hamlet.txt”)

textFile
.flatMap(line => line.split(“ “))
.map(word => (word, 1))
.reduceByKey((x, y) => x + y)
.saveAsTextFile(“results”)

Word Count (Scala)

49

val textFile =
sc.textFile(“hamlet.txt”)

textFile
.flatMap(_.split(“ “))
.map((_, 1))
.reduceByKey(_ + _)
.saveAsTextFile(“results”)

(Alternative Scala)

In Scala, underscores mean “this expression is the body of an anonymous function”

“_ + _” means the same as “(x, y) => x + y”

(_+_) looks like a butthole but we’re all going to just ignore that and be mature

50

I mean, word count, aka token frequency, is a building block for lots of text processing…just
because it’s easy doesn’t mean it’s not useful.

51

Other Key-Value Operations
> visits = sc.parallelize([(“index.html”, “1.2.3.4”),

(“about.html”, “3.4.5.6”),
(“index.html”, “1.3.3.1”)])

> pageNames = sc.parallelize([(“index.html”, “Home”),
(“about.html”, “About”)])

> visits.join(pageNames)
(“index.html”, (“1.2.3.4”, “Home”))
(“index.html”, (“1.3.3.1”, “Home”))
(“about.html”, (“3.4.5.6”, “About”))

> visits.cogroup(pageNames)
(“index.html”, ([“1.2.3.4”, “1.3.3.1”], [“Home”]))
(“about.html”, ([“3.4.5.6”], [“About”]))

52

Setting the Level of Parallelism

All the pair RDD operations take an optional second parameter for
number of tasks

>words.reduceByKey(lambda x, y: x + y, 5)
>words.groupByKey(5)
>visits.join(pageViews, 5)

Dan adds: So does scc.textFile (and other base RDDs). However, for these this is “minimum
number of tasks”. E.g. if a file is split into 16 blocks on HDFS, and you open it with
textFile(PathString, 10), you’ll still get 16 partitions, not 10.
If you’re submitting a job with a total of 8 vCores, you should always have 8 partitions if you
can manage it. Otherwise a core will be idle. (In fact, it’s usually better to have more tasks
than cores, so that tasks bottle necked on reading will be able to share a single core).

What’s the default?
It uses the same number of partitions for destination as the source has. Eg a reduceByKey
on an RDD with 8 partitions will result in another RDD with 8 partitions.
For joins, it’s the minimum of the LHS and RHS RDDs. Eg join an RD with 3 parts to one
with 8, you will get 3.

If you specify spark.default.parallelism it will use this as the default instead! (For shuffles
only, not parallelize textFile or other base RDDs)

53

Please watch your jobs on datasci and kill things that seem to be stuck. Try on student.cs
FIRST, only run on datasci when you’re confident. If you need to make changes, rerun on
student.cs first!!!

I’ve added a bonus slide at the end with some tips about viewing Spark jobs on the cluster.
(A big reason for “runs forever” on datasci is a reducer that’s O(n) – usually caused by
stripes being merged inefficiently.)

54

Under The Hood: DAG Scheduler

• General task graphs
• Automatically

pipelines functions
• Data locality aware
• Partitioning aware

to avoid shuffles

= cached partition= RDD

join

filter

groupBy

Stage 3

Stage 1

Stage 2

A: B:

C: D: E:

F:

map

Directed Acyclic Graph (DAG)
A job is broken down to multiple stages that form a DAG.

You can get the DAG from an RDD using the toDebugString method. (print it, since it
contains newlines and will be illegible as a string value)
It’s also viewable through the Hadoop monitoring page.

55

Physical Operators

Narrow dependency is much faster than wide dependency because it does not require
shuffling data between working nodes.

Also: reduceByKey, groupByKey, etc will also have narrow dependencies if the upstream
RDD is already partitioned by key. Its less common but not unheard of.

56

More RDD Operators

• map

• filter

• groupBy

• sort

• union

• join

• leftOuterJoin

• rightOuterJoin

• reduce

• count

• fold

• reduceByKey

• groupByKey

• cogroup

• cross

• zip

sample

take

first

partitionBy

mapWith

pipe

save ...

57

58

Performance

59

PageRank Performance

17
1

80

23

14

0

50

100

150

200

30 60

Ite
ra

tio
n

tim
e

(s
)

Number of machines

Hadoop

Spark

Since spark avoids heavy disk i/o, it significantly improves the performance.

60

Other Iterative Algorithms

0.96
110

0 25 50 75 100 125

Logistic Regression

4.1
155

0 30 60 90 120 150 180

K-Means Clustering
Hadoop

Spark

Time per Iteration (s)

Spark outperforms Hadoop in iterative programs because it tries to keep the data that will
be used again in the next iteration in memory. In contrast with Hadoop which always read
and write from/to disk.

61

Hadoop Ecosystem and SparkHadoop Ecosystem and Spark

62

YARN

YARN = Yet-Another-Resource-Negotiator
Provides API to develop any generic distributed application

Handles scheduling and resource request
MapReduce (MR2) is one such application in YARN

Hadoop’s (original) limitations:
Can only run MapReduce

What if we want to run other distributed frameworks?

63

In Hadoop v1.0, the architecture was designed to support Hadoop MapReduce only. But
later we realised that it is a good idea if other frameworks can also run on Hadoop cluster
(rather than building a separate cluster for each framework). So in v2.0, YARN provides a
general resource management system that can support different platforms on the same
physical cluster.

64

Hadoop v1.0

The Job tracker in v1.0 was specific to Hadoop jobs.

65

Hadoop v2.0

But the resource manager in v2.0 can support different types of jobs (e.g., Hadoop,
Spark,…).

66

Spark Architecture

67

Important –
There are
multiple
tasks per
executor

Why is this important?

To work, the Spark driver must send relevant
code (Scala or Python) to run each task.

thresh = 5
myRdd.map(lambda x: x >= thresh)

The lambda “captures” thresh, so it gets
packaged up too. (That’s bad if it’s large)

68

Broadcast

If you Broadcast a value, then Spark
only sends one copy per Executor
(worker machine) not per Task

thresh = sc.broadcast(5)

myRdd.filter(lambda x: x > thresh.value)

(It makes no difference here, but
would if broadcasting a lookup table)

69

Constant means Constant

Broadcast variables are read-only

thresh = sc.broadcast(5)
thresh.value = 6
Error: value is not a member of …Broadcast[int]
Error: value is not assignable

(Global variables are too, but will silently fail)

The errors are what you’d see in Scala or Python

Note that of course it’s technically possible to make a broadcast variable where the value is
a mutable type (easier in Python where that’s most collection types, but still doable in
Scala)
This will “work” in that it won’t give you the above errors.
But it won’t “work” in that each worker has its own copy of this value, so if one of them
updates a dictionary, the other workers don’t see that.

70

Accumulators

A Broadcast variable carries
information from Driver to
Executor

What if we want
communication from Executor
back to Driver?

A: Accumulator

71

Counter Accumulators (Python)

lineCounter = sc.accumulator(0)

def split_and_count(line):
lineCounter.add(1)
return line.split()

myRdd.map(split_and_count). …
lineCounter.value()

72

Counter Accumulators (Scala)

val lineCounter = sc.longAccumulator

def split_and_count(line : String) = {
lineCounter.add(1)
line.split()

}

myRdd.map(split_and_count). …
lineCounter.value

73

Types of Accumulator

longAccumulator, doubleAccumulator

(In Python, they’re just called accumulator)

Used for accumulating numerical values
Driver can inspect the value (and take average of values accumulated)
Workers can only write

74

Partitioners

By default Spark shuffles use a hash partitioner (just like MapReduce)

Also like MapReduce, can override.

75

(Now I’m taking from Ali again)

Movie rating example

This example in particular is not very helpful in slide-only form. I alt-tab and do some
goofing around in spark-shell or pyspark

76

Input Format

CSV file
Fields:
• User ID (unique key per user)
• Movie ID (unique key per movie)
• Rating (1-5 stars)
• Text of review (optional)

e.g.
“1, 100, 3.5, ‘s aight”

77

“1, 100, 4.0, …”
“1, 200, 5.0, …”
“2, 100, 5.0, …”

“60, 200, 3.0, …”
“61, 100, 3.0, …”
“61, 200, 1.0, …”

“80, 100, 2.0, …”
“81, 100, 4.0, …”
“82, 100, 5.0, …”

(1, 100, 4.0, …)
(1, 200, 5.0, …)
(2, 100, 5.0, …)

(60, 200, 3.0, …)
(61, 100, 3.0, …)
(61, 200, 1.0, …)

(80, 100, 2.0, …)
(81, 100, 4.0, …)
(82, 100, 5.0, …)

RD
D

Map (lambda x:x.split(“,”))

(100, 4.0)
(200, 5.0)
(100, 5.0)

(200, 3.0)
(100, 3.0)
(200, 1.0)

(100, 2.0)
(100, 4.0)
(100, 5.0)

Map (lambda x:(int(x[1]),
float(x[2])))

The “” are missing from the tuples in the middle because I’m not going to type that many
“”””””! It’d be really hard to read I think

78

(100, 4.0)
(200, 5.0)
(100, 5.0)

(200, 3.0)
(100, 3.0)
(200, 1.0)

(100, 2.0)
(100, 4.0)
(100, 5.0)

(100, [4.0, 5.0, 3.0,
2.0, 4.0, 5.0, …]) (200, [5.0, 3.0, 1.0, …]) …

groupByKey()

(100, 4.7) (200, 2.4) …

map(…)

79

(100, 4.0)
(200, 5.0)
(100, 5.0)

(200, 3.0)
(100, 3.0)
(200, 1.0)

(100, 2.0)
(100, 4.0)
(100, 5.0)

(100, [4.0, 5.0, 3.0,
2.0, 4.0, 5.0, …]) (200, [5.0, 3.0, 1.0, …]) …

groupByKey()

(100, 4.7) (200, 2.4) …

Can we do better?
Combiner?

map(…)

Avoid groupByKey if you can – MapReduce (without combiner) in Spark is essentially –
flatmap -> groupByKey -> flatmap. We’re trying to do better than MapReduce though.

Wait…converting MapReduce to Spark doesn’t use the reduceByKey function??? That’s
right. MapReduce’s reduce is more flexible.

80

Reduce vs reduceByKey

Reduce (MapReduce)

• (K2,V2) ⇒ List[K3,V3]
• KVP are partitioned and shuffled

by Partitioner
• Reduce job calls reduce on keys

in sorted order

reduceByKey (Spark)

• V ⇒ V

• RDD[(K,V)] ⇒ RDD[(K,V)]
• Less flexible

• But does what reduce should
normally be used for

• Reduces before shuffle
(combiner)

• Reduces after shuffle (reducer)

81

reduceByKey vs combineByKey

combineByKey gives more fine-grained control (if needed)

RDD[(K,V)].combineByKey(create, append, merge) ⇒ RDD[(K,C)]
create – make a C from a V
append – take a C and add a V to it
merge – combine two C

reduceByKey(reduce) calls combineByKey(identity, reduce, reduce)

82

reduceByKey vs aggregateByKey

aggregateByKey is between reduceByKey and combineByKey

RDD[(K, V)].aggregateByKey(init, append, merge) => RDD[(K, C)]
init – initial (or zero) value [type C]
append- take a C and add a V to it
merge- combine two C

83

groupByKey
You (probably) don’t want to
use it

This is incomplete! If your reduce action needs to know what the key is (meaning, if some
keys need to be treated differently) then groupByKey -> map or mapPartitions might be
what you want.

84

(100, (4.0, 1))
(200, (5.0, 1))
(100, (5.0, 1))

(200, (3.0, 1))
(100, (3.0, 1))
(200, (1.0, 1))

(100, (2.0, 1))
(100, (4.0, 1))
(100, (5.0, 1))

(100, (2430, 517)) (200, (1020, 425)) …

reduceByKey(…,3)

(100, 4.7) (200, 2.4) …

(100, (9.0, 2))
(200, (5.0, 1))

(100, (2.0, 1))
(200, (4.0, 2)) (100, (11.0, 3))

mapValues(…)

Spark’s reduceByKey is NOT like the Reduce phase of MapReduce!

reduceByKey – partitions the RDD, then reduces each partition, THEN shuffles for a final
reduce.
The second parameter here is optional (the default number of partitions is a Spark
configuration option)

85

(100, 4.7) (200, 2.4) …

saveAsTextFile()

Part-00000 Part-00001 Part-00002

86

(100, 4.7) (200, 2.4) …

saveAsTextFile()

Part-00000

(100, 4.7)
(200, 2.4)

…

coalesce(1)
Or

repartition(1)

Repartition triggers shuffling but it gives more balanced partitions. It can be used to
increase or decrease the number of partitions.
Coalesce can be used to only reduce the number of partitions. It avoids full shuffling so it is
faster than repartition but it may give unbalanced partitions.

87

Just the Code (Scala)

sc.textFile("movies.csv").
map(_.split(",")).
map(lst => (lst(1).toInt, (lst(2).toDouble,1))).
reduceByKey({case ((s1,c1), (s2,c2)) =>

(s1 + s2, c1 + c2)}).
mapValues({case (sum, cnt) =>

sum / cnt }).
coalesce(1).
saveAsTextFile("averages")

Behold the power of pattern matching anonymous functions! Pattern matching is one of
several reasons to love Scala
I could have written (p1, p2) => (p1._1 + p2._1, p1._2 + p2._2)) but that’s ugly!

Also…pro tip for live coding in front of an audience. Names like “count” and “cnt” are easy
to typo. There was some scandalized gasps one lecture, let me tell you…

88

Just the Code (Python)

sc.textFile("movies.csv").\

map(lambda line: line.split(",")).\

map(lambda lst:

(int(lst[1]), (float(lst[2]),1))).\

reduceByKey(lambda p1, p2:

(p1[0] + p2[0], p1[1] + p2[1])).\

mapValues(lambda pair: pair[0] / pair[1])).\

coalesce(1).\

saveAsTextFile("averages")

89

D’ya like DAGs?

print(rdd.toDebugString())
(1) CoalescedRDD[13] at coalesce at …
| MapPartitionsRDD[12] at map at …
| ShuffledRDD[11] at reduceByKey at …
+-(2) MapPartitionsRDD[10] at map at …

| MapPartitionsRDD[9] at map at …
| movies.csv MapPartitionsRDD[8] at textFile …
| movies.csv HadoopRDD[7] at textFile …

Read bottom-to-top
1. Text file loaded and partitioned (like MapReduce in Hadoop, this will try to allocate the

jobs to workers that already have that chunk of HDFS data)
2. Map is applied to existing partitions (split the lines)
3. Map is applied to existing partitions (extract useful fields, convert to appropriate types,

convert rating to (rating, 1) for averages
4. reduceByKey triggers a repartition based on the keys (movie IDs)
5. Map is applied to the new partitions (convert (sum , count) to sum / count)
6. Coalesce merges data into 1 partition

90

451 – A2 tips

• For CS451 students – the Hadoop cluster page you viewed on A0 is
useful for figuring out what’s going on with your Spark jobs!

• If you click “ApplicationManager” you can explore the DAG
graphically, including seeing all of the individual tasks created.

• Caution – if your map / flatMap is slow…it might actually be the next
stage that’s inefficient:
• RDD.flatMap(…).reduceByKey(…) – as the flatMap emits pairs, they’ll be

combined by reduceByKey’s lambda (like a MapReduce combiner).
• If this combiner is expensive, it’ll look like flatMap is slow

91

